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Reactions between weakly nucleophilic and electrophilic partners
constitute interesting targets for asymmetric catalysis, particularly
in the context of synthetically valuable carbon-carbon bond-
forming processes. In this context, we discovered recently that chiral
tridentate Schiff base chromium(III) complexes catalyze highly
enantioselective and diastereoselective hetero-Diels-Alder (HDA)
reactions between simple aldehydes and only mildly nucleophilic
dienes.1 Mechanistic studies performed on this reaction indicate
that the role of the catalyst is simply that of Lewis acid activation
of aldehydes through single-point binding.2 This observation raises
the possibility of a spectrum of other enantioselective reactions of
weak nucleophiles with aldehydes catalyzed by chiral CrIII com-
plexes. In this contribution, we describe the first evidence of the
generality of these catalysts, with the observation of highly selective
ene reactions between alkoxy- and silyloxyalkenes and aromatic
aldehydes.3,4 The â-hydroxyenol ether products formed in these
reactions are valuable chiral building blocks, useful as nucleophilic
partners in subsequent reactions or as direct precursors toâ-hy-
droxyketone andâ-hydroxyester derivatives (Scheme 1).

Systematic optimization of the tridentate ligand framework and
counterion of the (Schiff base)Cr(III) complex led to the identifica-
tion of 1 as a highly enantioselective catalyst for the model ene
reaction between 2-methoxypropene and 2-bromobenzaldehyde.5

Catalyst1 is prepared easily from commercially available compo-
nents, by condensation of 3,5-di-tert-butylsalicylaldehyde withcis-
1,2-aminoindanol, followed by reaction with CrCl2.6 The ene
reaction was found to proceed with highest enantioselectivities and
fastest rates in the presence of acetone or ethyl acetate as solvent
and added barium oxide as desiccant.7 Aging the catalyst for 5 h
at room temperature with desiccant prior to addition of 2-meth-
oxypropene and aldehyde at 4°C led to a measurable improvement
in ee (up to 8% increase in the case of reactions with benzaldehyde).

With the optimized conditions outlined above in hand, a variety
of substituted benzaldehyde derivatives (2a-r ) were examined in
asymmetric ene reactions with 2-methoxypropene (Table 1).
â-Hydroxyenol ether products3a-r were obtained in 75-97%
isolated yield and 70-96% ee, with>85% ee obtained in the
majority of cases. The scope of this reaction was found not to be
limited to aromatic aldehyde derivatives, asn-hexanal underwent
conversion to the corresponding enol ether in 84% ee and 54%
yield. In all cases examined, crude product could be obtained in
nearly quantitative yield by filtration of the reaction mixtures
through a small pad of Celite. Material thus isolated was contami-
nated with catalyst, but could be used nonetheless in subsequent
reactions without deleterious effect (vide infra). Separation of
catalyst was accomplished by silica gel chromatography, leading
to the product yields listed in the table.8

The identity and position of the substitution on the benzaldehyde
ring is observed to have a significant impact on both the rate and
enantioselectivity of the reaction. Electron-deficient benzaldehydes
reacted smoothly within 40 h to provide the desiredâ-hydroxyenol
ether products. In contrast, electron-rich substrates such aso-, m-,
andp-tolualdehyde (Table 1, entries 3e-g) underwent reaction more
slowly, achieving 40-60% conversion during the same reaction
time. Ortho-substituted benzaldehyde derivatives displayed par-
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Scheme 1

Table 1. Ene Reaction of 2-methoxypropene with Aldehydes 2a-r

product X methoda ee (%) yield (%)e time (h)

3a H B 88b 82 40
3b 2-Br A 96b 97 20
3c 3-Br A 86b 94 36
3d 4-Br B 87b 78 40
3e 2-CH3 B 94b 41 40
3f 3-CH3 B 90b 50 40
3g 4-CH3 B 89b 26 40
3h 2-Cl A 96b 98 20
3i 3-Cl A 84b 97 36
3j 4-Cl B 85c 78 40
3k 2-OCH3 B 95c 75 40
3l 3-CN A 86d 80 36
3m 4-CN A 84b 92 40
3n 2-NO2 A 96b 89 20
3o 3-NO2 A 90d 85 36
3p 4-NO2 A 70d 88 36
3q 2,4-Cl A 92b 96 20
3r 2,6-Cl A 86b 82 20

a Reactions were carried out with 1.0 mmol of aldehyde and 2.09 mmol
(200µL) 2-methoxypropene at 4°C. Conditions A: 5 mol % catalyst, 5 h
pre-stir with 90% BaO (650 mg) and acetone (400µL) at rt. B: 7.5 mol %
catalyst, 5 h pre-stir with 97% BaO (975 mg) and ethyl acetate (400µL).
b Ee determined by chiral GC on a Cyclodex-â column.c Ee determined
by chiral HPLC after hydrolysis to the hydroxyketone on a (R,R)-Whelk-
01 column.d Ee determined by chiral HPLC after ozonolysis to the ester
on a Chiralcel OD or Chiralpak AS column.e Isolated yield after silica gel
chromatography.f Absolute stereochemistry determined by hydrolysis of
3a to the hydroxyketone and comparison of optical rotation to known
literature value (ref 9).
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ticularly good reactivity and enantioselectivity relative to other
substituted derivatives (e.g., entry 3k, and comparison of entries
3b vs 3c or 3d and 3e vs 3f or 3 g). It is apparent that ortho
substituents serve to help define a particularly reactive CrIII‚aldehyde
complex wherein enantiofacial discrimination is enhanced, although
the bases for these effects are as yet not known.

The enantioenrichedâ-hydroxyenol ether products formed in the
ene reaction are easily transformed into aldol derivatives (Scheme
2). For example, the crude reaction mixture containing enol ether
3b was diluted with ether and filtered to remove the BaO.
Hydrolysis of 3b was performed by treatment with 2 N HCl,
affording â-hydroxyketone4 in 97% isolated yield and with no
measurable racemization.10 Alternatively, the filtered reaction solu-
tion containing3b was diluted with methanol and subjected to
ozonolysis at-78 °C. The resultant ozonide was quenched with
dimethyl sulfide, andâ-hydroxyester5 was obtained in 94% isolated
yield.11

The scope of the ene methodology was extended successfully
to the use of silyl enol ethers.12 Reaction of 2-trimethylsilyloxy-
propene with either benzaldehyde (2a) or 2-bromobenzaldehyde
(2b) proceeded smoothly to generateâ-hydroxysilylenol ethers6a
and6b, respectively, with no observable silyl transfer (Scheme 3).13

A small volume of 2,6-lutidine was added to each of these reactions
to serve as an acid scavenger, and no pre-stir was necessary to
achieve the optimal enantioselectivity. Theâ-hydroxysilylenol ether
products of these reactions are interesting chiral building blocks
for subsequent aldol-type reactions.

A crystal structure of catalyst7 (Figure 1), prepared from 3-tert-
butyl-5-bromosalicyladehyde and aminoindanol, provides valuable
information to begin mechanistic analysis of the ene reaction.14 The
X-ray data reveal a dimeric structure bearing two ligands and two
CrIII centers bridged through the indane-bound oxygens. Each
molecule of chromium also is bound to an axially positioned
chloride ion and water molecule.15 We propose that the role of the
pre-stir is to remove one molecule of bound water from the catalyst
dimer, thus providing an open coordination site for binding of
aldehyde.16

We have shown that tridentate Schiff base chromium(III)
complex1 efficiently catalyzes the asymmetric ene reaction between

aryl aldehydes and both 2-methoxypropene and 2-trimethylsilyl-
oxypropene. Studies are currently underway to elucidate the
mechanism and scope of this new reaction.
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Figure 1. X-ray crystal structure of catalyst7.
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